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Highlights
Adversity might best be thought of as a
violation of the expectable environment.

Adversity can takemany forms, including
exposure to biological and psychosocial
hazards, which often coexist as complex
exposures.

Many forms of early adversity are not
time limited, making it difficult to tease
apart the cumulative effects of adversity
It is now widely recognized that children exposed to adverse life events in the
first years of life are at increased risk for a variety of neural, behavioral, and
psychological sequelae. As we discuss in this paper, adverse events represent
a violation of the expectable environment. If such violations occur during a criti-
cal period of brain development, the detrimental effects of early adversity are
likely to be long lasting. Here we discuss the various ways adversity becomes
neurobiologically embedded, and how the timing of such adversity plays an
important role in determining outcomes. We conclude our paper by offering
recommendations for how to elucidate the neural mechanisms responsible for
the behavioral sequelae and how best to model the effects of early adversity.
from the effects of early life adversity.

Exposure to various forms of adversity
early in life is associated with alterations
in brain development, which in turn is as-
sociated with psychological, behavioral,
and physical health consequences.

Exposure to adversity during critical
periods of development is more likely to
lead to permanent rather than transient
effects on the brain.

Parallel studies across humans and ani-
mal models of early adversity will prove
essential to understanding how adversity
becomes neurobiologically embedded.
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A Conceptual Framework for Considering the Effects of Early Adversity on Brain
Development
There is growing evidence that children exposed to adversity (see Glossary) early in life are at
increased risk for atypical variations in brain development that in turn are associated with a variety
of psychological, behavioral, and physical health sequelae [1–3]. Adversity generally involves
exposure to biological hazards (e.g., malnutrition, environmental toxins, chronic infection),
psychological hazards (e.g., maltreatment, neighborhood or domestic violence), or both; and,
although one can be exposed to adversity at any point in the lifespan, here we argue that expo-
sure to adversity during critical periods of brain development –many of which occur within the
first years of life – can be particularly hazardous to development.

We begin our article by arguing that adversity is best considered through the lens of violations
in the expectable environment. These violations include experiences that are atypical
(e.g., patterned light is diffused through a cataract; a caregiver is physically or emotionally abusive)
or experiences that are entirely absent (e.g., a child born deaf or a child deprived of adequate
caregiving). Critical periods of brain development exist to encode the expectable environment,
with enduring effects on brain and behavior. Thus, it is vital to consider critical periods in the
context of how adversity exerts such deleterious effects. Indeed, adversity disrupts both critical
period substrates and critical period mechanisms themselves. Thus, adversity that occurs during
a critical period of brain development is far more likely to have enduring rather than transient
effects on development. We summarize these enduring effects of early adversity on human devel-
opment, and we offer suggestions for advancing progress on this complex topic. We make the
point that it is rare for children to be exposed to a single form of adversity at a single time point;
rather, a majority of children are exposed to multiple forms of adversity simultaneously, and in
many cases, such adversity extends over time rather than occurring at a single time point. This
makes it difficult to disentangle the differential effects of any specific adverse experience on
brain development; indeed, one might ask if it makes more sense to develop models that reflect
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Glossary
Adversity: a violation of the expectable
environment that takes the form of
biological hazards, psychosocial
hazards, of complex exposures of both
hazard types, with negative effects on
development.
Biological embedding: the
mechanisms through which
environmental experiences impact
neurobiology such that these
experiences have enduring
consequences on brain structure and
function.
Biological hazard: adverse biological
factors in the environment that have
negative effects on development, such
as insufficient nutrients, environmental
toxins, and pathogens that induce
chronic infection and inflammation.
Critical period: window of heightened
brain plasticity for encoding specific
environmental inputs through experience-
expectant mechanisms that results in
irreversible changes in brain function with
permanent effects on behavior, for
example, as in filial imprinting.
Experience-dependent mechanism:
neural plasticity mechanism facilitating
learning in response to experiences
across the lifespanwithout developmental
constraints, for example, strengthening or
weakening neural synapse connections.
Experience-expectant mechanism:
neural plasticity mechanism facilitating
the encoding of specific, expectable
environmental stimuli, such as patterned
light or auditory tones, during
constrained developmental windows;
underlies critical and sensitive period
phenomena.
Mixture model: a conceptual and
statistical framework for complex
adversity exposures that accounts for
how different types of adversity interact
and generate synergistic effects on
development, for example, implemented
with toxin mixtures.
Psychosocial hazard: adverse
cognitive, affective, or social experiences
that negatively impact development,
such as poverty, inadequate caregiving,
and maltreatment.
Sensitive period: constrained window
of time when the environment most
impacts brain function via experience-
expectant mechanisms; similar to a
critical period but with residual plasticity
after the period ends such that
experiences may continue to affect brain
function, for example, as in caregiver
attachment formation.
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the aggregate and interactive effects of adversity exposures. Finally, because of limitations in the
spatial and temporal resolution of human neuroimaging tools, and because of ethical constraints
on the kinds of studies that can be performed with human children, understanding how adversity
becomes neurobiologically embedded will require the continued development of animal models
that closely parallel the human condition.

What Do We Mean by ‘Adversity’?
Adversity has been used in a variety of ways. Some investigators have drawn analogies between
early life stress and adversity [4–6]. However, this can be misleading, as not all forms of adversity
will be interpreted and/or encoded as stressful, depending on brain maturity and developmental
history (e.g., an impoverished language environment, where a child is exposed to fewer words
and less complex language, is likely a form of adversity but it is in and of itself not stressful and
does not activate the stress response system); and conversely, not all stressful experiences are
adverse (e.g., a child may experience preparation for an exam as stressful, but this would not
be considered a form of adversity).

There are also conflicting views about the dimensions of adversity that are most impactful on
development. For example, the long-running Adverse Childhood Experiences study (ACEs)
[2,7–10] has argued that it is the number of adverse life events that most influence development,
not the nature of these events. However, not all adhere to this view of adversity; for example,
McLaughlin and Sheridan [11–13] have offered persuasive evidence that threatening events
(e.g., physical abuse) impact the brain differently than neglect does (e.g., absence of caregiving).
Moreover, the type of threat (e.g., physical abuse vs. verbal abuse) or the type of deprivation
(e.g., lack of caregiving vs. lack of visual or auditory input) likely impacts development differently.
Thus, simply considering the number of adverse events without also considering the nature of the
adversity and the timing of the adversity (as we discuss in some detail later) likely captures only
part of the story.

Adversity as a Violation of the Expectable Environment
For the purposes of this paper, we argue that adversity should be taken to reflect deviations in or
disruptions of the expectable environment [22,23]; that is, experiences that are expected to occur
(in order to confer survival and adaptation to the environment) either do not occur (e.g., lack
of caregiving; lack of nutrition) or are atypical in some way (e.g., physical abuse). The reason an
absence of an expected experience or the presence of an atypical experience matter can be
attributed to the experience-driven nature of brain development [20,21]. When cortical specializa-
tion is driven by experience, atypical experiences or the lack of experiences during thosewindows
should lead to atypical patterns of brain development [24,25]. This, of course, is well established
in sensory systems [26], and increasingly well established in higher cognitive and emotional
systems [27,28]. Thus, any deviation in or disruption of an expectable experience should be con-
sidered to have potentially adverse consequences (Figure 1 provides a conceptual representation
of adverse experiences compared with stress experiences in development).

The Role of Critical Periods
Recently, Gabard-Durnam and McLaughlin [14] summarized several conceptual models that
attempt to explain how adversity impacts neurodevelopment (Figure 2). Thesemodels emphasize
different dimensions of adversity (e.g., timing, duration, type, number) or focus on how individual-
level traits moderate the impact of an adverse experience [12,15–19]. The conceptual models
make assumptions not only about the most relevant features of environmental experience but
also the underlying neurobiological mechanisms involved. The majority of the models assume
experience-dependent neural mechanisms; essentially processes that facilitate learning across
2 Trends in Neurosciences, Month 2020, Vol. xx, No. xx
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Figure 1. Relation between Adversity and Stress Experiences in Development. This diagram illustrates the
conceptual differences and overlap between experiences of adversity and stress in development. We define adverse
experience to be a significant deviation from the expectable environment, independent of whether that experience triggers
a response in the stress system (adverse exposures highlighted in red). Similarly, early stressors all impact the stress
response system, independent of whether the experience reflects a severe deviation from the expectable environmen
(stress exposures highlighted in blue). Some experiences may be considered both stressful and adverse experiences
(highlighted in purple). We provide examples of biological hazards (broken outline) and psychosocial hazards (dotted
outline) in each category of adverse and stress experiences.
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the lifespan without ontogenetic constraints (e.g., synaptogenesis/pruning [20,21]). However,
sensitive and critical period models (see later) rely on experience-expectant mechanisms
that facilitate biological encoding of expectable environmental stimuli (e.g., patterned light,
speech) during constrained developmental windows of heightened plasticity [20,21]. These
neurobiological mechanisms have distinct implications for the impact of adversity. That is, adver-
sity occurring during experience-expectant development, such as during sensitive/critical
periods, is more likely to have significant, persistent effects on neural function into adulthood.

Thus, the timing of exposure is essential in considering the effects of early adversity on brain
development, which brings us to the role of sensitive or critical periods. Although these terms
in Neurosciences, Month 2020, Vol. xx, No. xx 3
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Figure 2. Conceptual Models of Environmental Influence on Neurodevelopment. Thesemodels differ in the dimensions of adversity they account for (e.g., duration,
timing, number) and the underlying neurobiological mechanisms (i.e., experience-expectant or experience-dependent mechanisms). Adversity may have the most
significant, long-lasting effects on the brain when it disrupts or abolishes expected experiences during critical or sensitive periods of development for encoding those
experiences (cases at top right of figure). Adapted from [14].
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are often used interchangeably, they differ in fundamental ways. Knudsen [65], for example, has
argued that sensitive period is a more general term used to describe the effects experience has
on the brain during narrow windows of time. If experiences essential to cortical specialization fail
to occur during this time (e.g., access to patterned light or linguistic input), it may be difficult to
redirect development along a typical trajectory; even then, function in the affected domain
(e.g., vision, language) may not fully recover. As Nelson et al. [28] argue, the formation of a secure
attachment to a caregiver may reflect a sensitive period. Importantly, Knudsen [65] has argued
that whatever plasticity exists beyond a sensitive period is constrained by what transpired during
a sensitive period; that is, one can reshape existing circuits only to a limited degree. If there is no
residual plasticity after the experience-expectant window, however, then this period is a deemed
a critical period. Therefore, critical periods result in irreversible changes in brain function. If a key
experience fails to occur during a critical period, behavior will be permanently impacted, with little
recovery possible. Filial imprinting in animals likely represents a critical period (e.g., [66]).

Several additional points about critical/sensitive periods are worth noting. First, there is not just
one critical/sensitive period but rather, cascading critical and sensitive periods for different neural
circuits and for different complex phenomena, such as caregiving and language (Figure 3).
4 Trends in Neurosciences, Month 2020, Vol. xx, No. xx
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Figure 3. Multiple Critical and Sensitive Periods Occur in the First Years of Life. Sensitive and critical periods in earl
brain development exist across sensory, cognitive, and affective domains. There are multiple critical and sensitive period
both across and within domains, as illustrated here for language development. Adversity in early life may have particularl
significant, lasting consequences if it disrupts these early critical and sensitive periods of brain development. Reproduced
with permission, from [26].
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Second, even within a domain there will be different critical and sensitive periods. For example,
there are multiple critical/sensitive periods for language [26].

Considering Critical Period Plasticity in the Context of Adversity
We wish to make several points to clarify the association between adversity and critical period
plasticity. First, adversity is not itself an expectable experience that the brain prepares for. For
example, the brain does not expect exposure to domestic violence. Adversity reflecting absent
or impoverished specific expectable experiences clearly influences critical period inputs, but the
adversity is not the expected substrate. Moreover, critical periods are inherently specific to partic-
ular types of experience and particular neural circuits [26,67]. However, many types of adversity
reflect complex exposures (e.g., poverty, malnutrition) that can impact multiple critical periods
acrossmultiple domains (e.g., co-occurring language and attachment critical periods) and across
development (hierarchical language critical periods). Thus, there is unlikely to be one narrow
window when these adverse experiences affect a single neural target. Indeed, the ability to
exert widespread effects on the brain (and multiple critical periods) is part of what makes adver-
sity, such as poverty or malnutrition, so deleterious to development.

Second, adversity acts on critical period processes. The extent to which adverse experiences
activate biological mediators, like glucocorticoids or oxidative stress, reduces plasticity during
critical periods or prolongs plasticity afterwards, respectively (e.g., [68–70]). Other changes are
adversity specific. For example, threat experiences appear to accelerate critical period timing,
whereas deprivation in certain domains (e.g., vision, such as cataracts in newborns) causes
timing delays [17,71,72]. Thus, adversity exerts powerful effects on development, in part because
it impacts both the expectable experience substrates of critical periods and the critical period
mechanisms themselves.

Third, adversity that occurs in the context of critical periods is also potent because it is more likely
to have lasting effects on brain function and behavior than adversity following critical periods.
n Neurosciences, Month 2020, Vol. xx, No. xx 5
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Indeed, critical periods ‘close’ via molecular brakes (e.g., perineuronal nets, myelin) that actively
dampen plasticity to stabilize and protect experience-driven learning from future insults like
adversity [67]. That is, in the context of healthy development, these protective brakes reduce
future vulnerability to adversity, as experiences of any kind may only minimally impact brain
circuitry. However, in the context of adversity that occurs during critical periods, deleterious
effects are similarly preserved and ‘locked in’ brain circuit function. Plasticity brakes then prevent
future experience from rescuing function effectively. This shift in developmental priorities from
plasticity to stability is thus a double-edged sword with regard to adversity experiences.

A High-Level Summary of the Effects of Adversity
We now consider the empirical evidence that early adversity can have enduring effects on
human development. Countless studies have demonstrated an association between exposure
to early, adverse life events and later maladaptive outcomes, with sequelae spanning a broad
number of developmental domains. What follows is a cursory summary of some of the main
findings.

Biological Hazards
There is a host of biological hazards that can disrupt healthy development. Examples of two haz-
ards that are particularly problematic among children growing up in many parts of the world
include malnutrition (from an insufficient nutritional environment) and inflammation (e.g., from
unsanitary environments, for review, see [29]). The literature regarding the effects of malnutrition
is ample, and the following are intended just as illustrative examples. There is evidence from
human postmortem studies that 3- to 4-month-old infants who are malnourished show reduced
dendritic growth in the primary motor cortex [30]. In addition, adults who experienced famine dur-
ing gestation exhibit white matter (WM) hyperintensities over the entire cerebrum. One hypothesis
regarding the underpinnings of such changes is that famine may lead to an inadequate supply of
the nutrients required to sustain and replace catabolized myelin and gliosis after myelin loss [31].
There is histological evidence from malnourished juvenile rodents of an association between
undernutrition and reduced cortical synaptic density and neuronal loss and alterations in callosal
connections, likely caused by reduced neuron proliferation and changes in myelination and
synaptic pruning [32–34]. The neuronal and volumetric changes in the brain associated with
undernutrition may lead to poor cognitive outcomes [35].

Turning specifically to macronutrient deficiencies in children (for review, see [36]), even viewed
through the coarse lens of body mass index (BMI), deleterious effects on brain development
have been observed. For example, using functional magnetic resonance imaging (fMRI), van
Meer et al. [37] have reported that as BMI increases, activation in the dorsolateral prefrontal cortex
decreases. In terms of micronutrients, deficiencies in a large number of vitamins and minerals
have been found to lead to perturbations across multiple levels of brain development (for review,
see [38]). An extensively studied single nutrient deficiency is iron, which is known to influence
myelination early in life (e.g., [39]) and impact the functioning of the default mode brain network
in adults [40].

Inflammatory processes brought about by hazards, such as poor sanitation and unclean water,
have also been linked to poor developmental outcomes. For example, higher levels of inflamma-
tion in the first few years of life are associated with reduced scores on the Bayley Scales of Infant
Development (e.g., [41]). At the level of the brain, both increased inflammation and adversity gen-
erally are associated with decreases in the amplitude of the visual evoked potential [42] and
changes in functional networks, derived from the electroencephalography (EEG), that underpin
social information processing [43].
6 Trends in Neurosciences, Month 2020, Vol. xx, No. xx
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Psychosocial Hazards
Psychosocial hazards include a plethora of events, such as lack of adequate caregiving,
poverty, andmaltreatment. A great deal of work has reported associations between psychosocial
hazards and a variety of developmental outcomes. At the behavioral level, for example, higher
levels of adversity are associated with problems in learning and memory, which in turn may be
related to higher rates of academic failure (see [8,22,44–49]). Similarly, higher levels of adversity
(particularly neglect) are associated with atypical patterns of social-emotional development and
higher rates of psychopathology [45,50], and in stress reactivity [4]. Many of these behavioral
sequelae appear to be mediated by a variety of changes in the brain, such as increased/
decreased cortical volume [51,52], increased/decreased cortical thinning [12,53], perturbations
in WM integrity [54–56], and increased/decreased brain activity [57,58].

The Intersection of Biological and Psychosocial Hazards
Although there is a long history of attempting to examine the differential effects of different types of
adversity, the reality is the vast majority of children are exposed to multiple and concurrent forms
of adversity [23,59,60]. A case in point is work our lab is conducting in an urban slum in Dhaka,
Bangladesh (see [61]). These children are often exposed to very high levels of both biological
and psychosocial hazards, including chronic inflammation, diarrheal disease, malnutrition,
maltreatment, poverty, and exposure to domestic violence. Across a series of studies we have
demonstrated that this constellation of factors is associated with reduced brain volume [62],
reduced functional activation of various resting state networks [62], reductions in the amplitude
of the visual evoked potential [42], an increase in the functional brain networks associated with
social information processing [43], and reductions in brain metabolism in response to social
and nonsocial events [90].

Strategies to Parse the Effects of Adversity on Development
Given this robust literature linking early adversity with lasting impacts on development, a question
that is currently receiving considerable attention empirically is how early adversity becomes
neurobiologically embedded. Figure 4 complements the mechanisms highlighted in Figure 2 by
illustrating a potential general model of biological embedding and sequelae across the lifespan.
Howmay these conceptual models of biological embedding be translated into productive empirical
strategies? At the level of the brain, it is well established that certain regions and circuits are targets
for different types of adversity and have different maturation trajectories; so empirical studies must
carefully consider adversity type and timing in the context of specific brain targets’ development.
For example, receptors for circulating glucocorticoids in the hippocampus make this particular
structure vulnerable to chronic early stress [73,74]; as a result, there are now multiple studies
that indicate that children who are maltreated [75,76] or adults with a history of maltreatment in
childhood [77–79] show reductions in hippocampal volume and perform more poorly on tests of
declarative and working memory [80,81]. We suggest two additional empirical approaches to
parse the complex ways that adversity becomes biologically embedded in brain development.

New Statistical Frameworks
First, given the prevalence of co-occurring types of adversity in development, it may be advanta-
geous in future research to take an approach that accounts for these multiple exposures as
environmental mixtures. Mixture models facilitate identifying how different types of adversity
interact and generate synergistic effects on development. Such an approach has already been
successfully implemented in the context of environmental toxicology, to model complex effects
of toxin mixtures [63,64]. A broadening of the mixture framework for combinations of adverse
experiences across biological and psychosocial hazards may thus provide additional insight
into the effects of adversity under the conditions most frequently experienced in development.
Trends in Neurosciences, Month 2020, Vol. xx, No. xx 7
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Figure 4. Sequelae of Adverse Experiences. Illustration of the consequences of early adverse experience across development (here for the psychosocial hazard type
of adversity). Adverse psychosocial hazards in early life co-occurring with critical and sensitive periods to encode psychosocial experiences (e.g., language and caregiver
attachment) interact with genetic profiles to produce biological and behavioral changes across development that together lead to a variety of detrimental outcomes
persisting into adulthood. Adapted from [1].
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Coordinated Cross-Species Approaches
Second, given the significant, enduring effects of adversity that occurs during critical periods, we
advocate that future research addressing the question of neurobiological embedding of adversity
would benefit from a central focus on critical period processes via coordinated cross-species
studies (such as has been done in the context of autism, where the visual evoked potential has
been used in human children with Rett syndrome and in MECP2 mice [91]). Importantly, critical
periods are carefully orchestrated processes at the molecular level. For example, critical period
initiation is regulated by both molecular pacers, which inhibit critical period initiation to prevent
precocious plasticity [e.g., polysialylated neural cell adhesion molecule (PSA-NCAM)], and
triggers that promote critical period plasticity [e.g., brain-derived neurotrophic factor (BDNF),
γ-aminobutyric acid (GABA)-ergic development] (see [67]). Moreover, manipulations (including
adversity-related changes) of thesemolecular regulators are so powerful that they can shift critical
period timing, prevent critical periods from opening, and even reopen critical periods in the adult
brain [67,82–84]. However, these molecular-level processes are difficult to observe in human
neurodevelopment. Thus, to fully understand how adversity becomes biologically embedded, it
is necessary to coordinate human behavioral and neuroimaging studies with those in animal
models.

Parallel studies across species, to examine the biological embedding of adversity, offer several
advantages. Insights from molecular-level studies in animal models may identify new neural
targets (e.g., a prefrontal cortex critical period [85]) or critical period modulators [e.g., selective
serotonin reuptake inhibitors (SSRIs), opioids, general anesthetic drugs] that can be studied in
human development [83,84,86]. Animal model experiments may also offer therapeutic solutions
8 Trends in Neurosciences, Month 2020, Vol. xx, No. xx



Outstanding Questions
How do genetic variants interact
with environments and developmental
timing to influence critical periods, and
in so doing confer risk/protection from
adversity?

Which critical period mechanisms, in
the context of adversity, generalize or
differ between animal models and
human neurodevelopment, and across
different circuits within the human brain
(e.g., sensory vs. associative cortex)?

How may simulations of the effects
of adversity using computational
approaches, without the constraints
of human and animal studies, improve
our understanding of how adversity
becomes neurobiologically embedded?

In considering the development of new
interventions for individuals exposed to

Trends in Neurosciences
for adverse experiences in humans, as with the treatment for amblyopia in the visual domain [87].
Lastly, the timing and nature of adversity in animal models can be manipulated in a controlled
manner to complement the natural experiments of adversity exposure in humans [88,89].

Concluding Remarks
Epidemiological studies dating back several decades advanced the idea that early adversity is
associated with compromised neural and psychological outcomes. Recent work in neuroscience
has begun to shed light on how a violation in experience-expected development during critical
periods of brain development accounts for altered developmental outcomes. Not surprisingly,
many questions remain unanswered (see Outstanding Questions). Moving forward, we advocate
that this critical period approach will be just as important for an interventionist agenda.
Specifically, interventions informed by our knowledge of how and when critical periods unfold
in the context of adversity may leverage that critical period plasticity to redirect development
along a typical trajectory. Moreover, these interventions, which can often be seen by themselves
as enriched experiences, can shed additional light on developmental plasticity and critical period
mechanisms. Thus, critical periods provide a framework for the synthesis of basic neuroscience
and translational interventions in the context of early life adversity, and for development of new
interventional strategies that are urgently needed to address the clinical and public health
repercussions of adversity.
early adversity, the question arises as
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